3.166 \(\int \frac{\cos ^{\frac{3}{2}}(c+d x) (A+C \cos ^2(c+d x))}{(a+a \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=178 \[ \frac{(A-13 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{6 a^3 d}-\frac{(A-49 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac{(A-13 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{6 d \left (a^3 \cos (c+d x)+a^3\right )}-\frac{(A+C) \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}+\frac{2 (A-4 C) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{15 a d (a \cos (c+d x)+a)^2} \]

[Out]

-((A - 49*C)*EllipticE[(c + d*x)/2, 2])/(10*a^3*d) + ((A - 13*C)*EllipticF[(c + d*x)/2, 2])/(6*a^3*d) - ((A +
C)*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) + (2*(A - 4*C)*Cos[c + d*x]^(3/2)*Sin[c + d*x
])/(15*a*d*(a + a*Cos[c + d*x])^2) + ((A - 13*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(6*d*(a^3 + a^3*Cos[c + d*x]
))

________________________________________________________________________________________

Rubi [A]  time = 0.480264, antiderivative size = 178, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3042, 2977, 2748, 2641, 2639} \[ \frac{(A-13 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{6 a^3 d}-\frac{(A-49 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac{(A-13 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{6 d \left (a^3 \cos (c+d x)+a^3\right )}-\frac{(A+C) \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}+\frac{2 (A-4 C) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{15 a d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(3/2)*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^3,x]

[Out]

-((A - 49*C)*EllipticE[(c + d*x)/2, 2])/(10*a^3*d) + ((A - 13*C)*EllipticF[(c + d*x)/2, 2])/(6*a^3*d) - ((A +
C)*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) + (2*(A - 4*C)*Cos[c + d*x]^(3/2)*Sin[c + d*x
])/(15*a*d*(a + a*Cos[c + d*x])^2) + ((A - 13*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(6*d*(a^3 + a^3*Cos[c + d*x]
))

Rule 3042

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x
])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{3}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx &=-\frac{(A+C) \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac{\int \frac{\cos ^{\frac{3}{2}}(c+d x) \left (\frac{5}{2} a (A-C)+\frac{1}{2} a (A+11 C) \cos (c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx}{5 a^2}\\ &=-\frac{(A+C) \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac{2 (A-4 C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac{\int \frac{\sqrt{\cos (c+d x)} \left (3 a^2 (A-4 C)+\frac{1}{2} a^2 (A+41 C) \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{15 a^4}\\ &=-\frac{(A+C) \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac{2 (A-4 C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac{(A-13 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{6 d \left (a^3+a^3 \cos (c+d x)\right )}+\frac{\int \frac{\frac{5}{4} a^3 (A-13 C)-\frac{3}{4} a^3 (A-49 C) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{15 a^6}\\ &=-\frac{(A+C) \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac{2 (A-4 C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac{(A-13 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{6 d \left (a^3+a^3 \cos (c+d x)\right )}-\frac{(A-49 C) \int \sqrt{\cos (c+d x)} \, dx}{20 a^3}+\frac{(A-13 C) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{12 a^3}\\ &=-\frac{(A-49 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac{(A-13 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{6 a^3 d}-\frac{(A+C) \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac{2 (A-4 C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac{(A-13 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{6 d \left (a^3+a^3 \cos (c+d x)\right )}\\ \end{align*}

Mathematica [C]  time = 6.76445, size = 1271, normalized size = 7.14 \[ \text{result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(3/2)*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^3,x]

[Out]

((-I/10)*A*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I
)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*
x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1
 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[
(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c]
+ I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/(a + a*Cos[
c + d*x])^3 + (((49*I)/10)*C*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3
/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x
))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x)
)*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I
*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2
*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin
[c])))/(a + a*Cos[c + d*x])^3 - (2*A*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*
x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 +
Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^3*
Sqrt[1 + Cot[c]^2]) + (26*C*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTa
n[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]
*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^3*Sqrt[1 +
Cot[c]^2]) + (Cos[c/2 + (d*x)/2]^6*Sqrt[Cos[c + d*x]]*((-4*(-A + 29*C + 20*C*Cos[c])*Csc[c])/(5*d) + (4*Sec[c/
2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] - 29*C*Sin[(d*x)/2]))/(5*d) - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^5*(A*Sin[(d
*x)/2] + C*Sin[(d*x)/2]))/(5*d) + (8*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(2*A*Sin[(d*x)/2] + 7*C*Sin[(d*x)/2]))/(15*
d) + (8*(2*A + 7*C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(15*d) - (2*(A + C)*Sec[c/2 + (d*x)/2]^4*Tan[c/2])/(5*d)))/
(a + a*Cos[c + d*x])^3

________________________________________________________________________________________

Maple [B]  time = 0.148, size = 451, normalized size = 2.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3,x)

[Out]

-1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*A*cos(1/2*d*x+1/2*c)^8+10*A*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+6*A*
cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*
c),2^(1/2))-348*C*cos(1/2*d*x+1/2*c)^8-130*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*El
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5-294*C*cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-2*A*cos(1/2*d*x+1/2*c)^6+578*C*cos(
1/2*d*x+1/2*c)^6-24*A*cos(1/2*d*x+1/2*c)^4-264*C*cos(1/2*d*x+1/2*c)^4+17*A*cos(1/2*d*x+1/2*c)^2+37*C*cos(1/2*d
*x+1/2*c)^2-3*A-3*C)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x
+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{3} + A \cos \left (d x + c\right )\right )} \sqrt{\cos \left (d x + c\right )}}{a^{3} \cos \left (d x + c\right )^{3} + 3 \, a^{3} \cos \left (d x + c\right )^{2} + 3 \, a^{3} \cos \left (d x + c\right ) + a^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^3 + A*cos(d*x + c))*sqrt(cos(d*x + c))/(a^3*cos(d*x + c)^3 + 3*a^3*cos(d*x + c)^2 + 3
*a^3*cos(d*x + c) + a^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^3, x)